Skip to content

Matrix

HNF(A)

Computes row-style Hermite Normal Form of a integer matrix A.

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def HNF(A: MatrixInt) -> Tuple[MatrixInt, SquareMatrixInt, int]:
    r'''
    Computes row-style Hermite Normal Form of a integer matrix A.

    Args:

    Returns:

    '''
    H = A.copy()
    m, n = H.shape
    p = min(m,n)
    k, j = 0, 0

    U = np.identity(m, dtype=int)
    detU = 1


    while j != p:
        # Choose pivot
        col = H[k:, j]
        non_zero = col[col != 0]
        if len(non_zero) == 0:
            j += 1
            k += 1
            continue
        min_val = np.min(np.abs(non_zero))
        i0 = np.where(np.abs(col) == min_val)[0][0] + k
        if i0 > k:
            H[[k, i0]] = H[[i0, k]]
            detU *= -1
            U = elementary_row_swap(m, k, i0) @ U

        if H[k,j] < 0:
            H[k] = -H[k]
            detU *= -1
            U = elementary_row_mul(m, k, -1) @ U

        # Reduce Rows
        b = H[k,j]
        for i in range(k+1, m):
            q = round(H[i,j] / b)
            H[i] -= q * H[k]
            U = elementary_row_add(m, i, k, -q) @ U

        # Check if column is done
        if np.all(H[k+1:, j] == 0):
            j += 1
            k += 1

    # Final reductions
    k = 0
    for j in range(p):
        if H[k,j] < 0:
            H[k] = -H[k]
            U = elementary_row_mul(m, k, -1) @ U
            detU *= -1

        b = H[k,j]
        if b == 0: continue
        for i in range(k):
            q = H[i,j] // b
            H[i] -= q * H[k]
            U = elementary_row_add(m, i, k, -q) @ U

        k += 1

    return H, U, detU

cofactor(A, i, j)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
206
207
208
209
210
211
212
213
214
def cofactor(A: SquareMatrixInt, i: int, j: int) -> int:
    r'''

    Args:

    Returns:

    '''
    return minor(A, i, j) * ((-1) ** (i + 1 + j + 1))

cofactor_matrix(A)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def cofactor_matrix(A: SquareMatrixInt) -> SquareMatrixInt:
    r'''

    Args:

    Returns:

    '''
    n = A.shape[0]
    C = np.zeros((n,n), dtype=int)
    for i in range(n):
        for j in range(n):
            C[i,j] = cofactor(A, i, j)
    return C

det(A)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
183
184
185
186
187
188
189
190
191
192
def det(A: SquareMatrixInt) -> int:
    r'''

    Args:

    Returns:

    '''
    H, U, detU = HNF(A)
    return np.prod(np.diagonal(H)) * detU

dual_q_ary_lattice_basis(A, modulus)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
def dual_q_ary_lattice_basis(A: MatrixInt, modulus: int) -> SquareMatrixModInt:
    r'''

    Args:

    Returns:

    '''
    m, n = A.shape
    Y = mod_left_kernel(A, modulus)
    assert Y.shape == (m - n, m)

    q = modulus
    return np.block([[Y], [np.zeros((m-n, m-n), dtype=int), q * np.identity(n, dtype=int)]])

elementary_row_add(n, i, j, s)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
31
32
33
34
35
36
37
38
39
40
41
def elementary_row_add(n: int, i: int, j: int, s: int):
    r'''

    Args:

    Returns:

    '''
    E = np.identity(n, int)
    E[i, j] = s
    return E

elementary_row_mul(n, i, s)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
18
19
20
21
22
23
24
25
26
27
28
def elementary_row_mul(n: int, i: int, s: int):
    r'''

    Args:

    Returns:

    '''
    E = np.identity(n, int)
    E[i, i] = s
    return E

elementary_row_swap(n, i, j)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
 6
 7
 8
 9
10
11
12
13
14
15
16
def elementary_row_swap(n: int, i: int, j: int):
    r'''

    Args:

    Returns:

    '''
    E = np.identity(n, int)
    E[[i,j]] = E[[j, i]]
    return E

left_kernel(A)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def left_kernel(A: MatrixInt) -> MatrixInt|None:
    r'''

    Args:

    Returns:

    '''
    H, U, _ = HNF(A)
    r = 0
    for row in H[::-1]:
        if np.all(row == 0):
            r += 1
        else:
            break
    if r == 0:
        return None
    return U[-r::]

matrix_modinv(A, modulus)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
233
234
235
236
237
238
239
240
241
242
243
244
def matrix_modinv(A: SquareMatrixInt, modulus: int) -> SquareMatrixModInt:
    r'''

    Args:

    Returns:

    '''
    C = cofactor_matrix(A) % modulus
    det_inv = integer_ring.modinv(det(A), modulus)

    return (det_inv * C.T) % modulus

minor(A, i, j)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
195
196
197
198
199
200
201
202
203
def minor(A: SquareMatrixInt, i: int, j: int) -> int:
    r'''

    Args:

    Returns:

    '''
    return det(np.delete(np.delete(A, i, axis=0), j, axis=1))

mod_REF(A, modulus)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
def mod_REF(A: MatrixInt, modulus: int) -> Tuple[MatrixModInt, SquareMatrixModInt]:
    r'''

    Args:

    Returns:

    '''
    m, n = A.shape
    inv = lambda a: integer_ring.modinv(a, modulus)

    M = A.copy()
    M %= modulus

    U = np.identity(m, dtype=int)

    for j in range(min(m,n)):
        #print(f"j= {j}")
        #print(M)
        col = M[ : ,j]
        nonzero = np.nonzero(col[j:])[0]
        if len(nonzero) == 0:
            # no pivot, in this column
            continue
        pivot_i = nonzero[0] + j

        #print("current column:")
        #print(col)
        #print(f"pivot index: {pivot_i}")
        #print(f"pivot value: {M[pivot_i, j]}")


        if pivot_i != j:
            row_swap(M, pivot_i, j)
            U = (elementary_row_swap(m, pivot_i, j) @ U) % modulus

        #print("After swap")
        #print(M)


        pivot_inv = inv(M[j,j])
        row_scale(M, j, pivot_inv)
        U = (elementary_row_mul(m, j, pivot_inv) @ U) % modulus

        M %= modulus

        #print("After scale")
        #print(M)


        for i in range(j + 1, m):
            if M[i, j] != 0:
                U = (elementary_row_add(m, i, j, -M[i,j]) @ U) % modulus
                row_add(M, i, j, -M[i,j])
                M %= modulus

        #print("After reduce")
        #print(M)
        #print("===============")

    return M % modulus, U % modulus

mod_RREF(A, modulus)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def mod_RREF(A: MatrixInt, modulus: int) -> Tuple[MatrixModInt, SquareMatrixModInt]:
    r'''

    Args:

    Returns:

    '''
    M, U = mod_REF(A, modulus)
    m, n = M.shape

    h = m - 1
    for j in range(n - 1, -1, -1):
        # check if current column is a pivot column
        if M[h, j] != 1:
            # skip zero rows at the bottom
            if M[h, j] == 0:
                h -= 1
            continue

        # reduce column's entries below pivot
        for i in range(h - 1, -1, -1):
            coeff = M[i,j]
            row_add(M, i, h, -coeff)
            U = elementary_row_add(m, i, h, -coeff) @ U

        # move to the next row
        h -= 1


    return M % modulus, U % modulus

mod_left_kernel(A, modulus)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
def mod_left_kernel(A: MatrixInt, modulus: int) -> MatrixInt|None:
    r'''

    Args:

    Returns:

    '''
    G, U = mod_RREF(A, modulus)
    r = 0
    for row in G[::-1]:
        if np.all(row == 0):
            r += 1
        else:
            break
    if r == 0:
        return None
    return U[-r::]

nullity(A)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def nullity(A: MatrixInt) -> int:
    r'''

    Args:

    Returns:

    '''
    H, U, _ = HNF(A)
    r = 0
    for row in H[::-1]:
        if np.all(row == 0):
            r += 1
        else:
            break
    return r

q_ary_lattice_basis(A, modulus)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
def q_ary_lattice_basis(A: MatrixInt, modulus: int) -> SquareMatrixInt:
    r'''

    Args:

    Returns:

    '''
    m, n = A.shape
    assert n >= m
    # A = (A1 | A2)
    A1 = A[ : ,:m] # m x m
    A2 = A[ : ,m:] # m x (n - m)

    B11 = np.identity(m, dtype=int) # m x m
    B12 = (matrix_modinv(A1, modulus) @ A2) % modulus # m x (n - m)
    B21 = np.zeros((n - m, m), dtype=int)
    B22 = modulus * np.identity(n - m, dtype=int)

    print(B11)
    print()
    print(B12)
    print()
    print(B21)
    print()
    print(B22)

    return np.block([[B11, B12], [B21, B22]])

row_add(M, i, k, s)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
63
64
65
66
67
68
69
70
71
def row_add(M: MatrixInt, i: int, k: int, s: int):
    r'''

    Args:

    Returns:

    '''
    M[i] += s * M[k]

row_scale(M, i, s)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
53
54
55
56
57
58
59
60
61
def row_scale(M: MatrixInt, i: int, s: int):
    r'''

    Args:

    Returns:

    '''
    M[i] *= s

row_swap(M, i, j)

Args:

Returns:

Source code in src/lbpqc/primitives/matrix.py
43
44
45
46
47
48
49
50
51
def row_swap(M: MatrixInt, i: int, j: int):
    r'''

    Args:

    Returns:

    '''
    M[[i,j]] = M[[j,i]]