Rng
Source code in src/lbpqc/primitives/rng.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
rng
property
Access the underlying numpy
rng object.
Args:
Returns:
LWE_dist(q, s, m, err_dist, *args)
Args:
Returns:
Source code in src/lbpqc/primitives/rng.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
LWR_dist(q, p, s, m)
Args:
Returns:
Source code in src/lbpqc/primitives/rng.py
115 116 117 118 119 120 121 122 123 124 125 126 |
|
__init__(seed)
Initialize numpy rng with seed value.
Use secrets.randbits(128)
for more cryptographicly secure rng.
Source code in src/lbpqc/primitives/rng.py
11 12 13 14 15 16 17 |
|
row_LWE_dist(q, s, err_dist, *args)
Args:
Returns:
Source code in src/lbpqc/primitives/rng.py
100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
row_LWR_dist(q, p, s)
Args:
Returns:
Source code in src/lbpqc/primitives/rng.py
129 130 131 132 133 134 135 136 137 138 139 140 |
|
sample_Zq_subset(q)
Args:
Returns:
Source code in src/lbpqc/primitives/rng.py
143 144 145 146 147 148 149 150 151 152 |
|
sample_discrete_gaussian(s, c, n, k=100)
How to Use a Short Basis: Trapdoors for Hard Lattices and New Cryptographic Constructions; page 14; 4.1 Sampling Integers;
Args:
Returns:
Source code in src/lbpqc/primitives/rng.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
sample_kbits_prime(kbits)
Args:
Returns:
Source code in src/lbpqc/primitives/rng.py
212 213 214 215 216 217 218 219 220 221 222 |
|
sample_prime(a, b=None)
samples a random prime from interval [a, b) number of primes in interval \((0, x]\) - \(\pi(x) \approx \frac{x}{\log{x}}\) so number of primes in [a, b) is approximetly equal to \(P = \frac{b}{\log{b}} - \frac{a}{\log{a}}\). probabiliy of uniformly chosen integer from (a,b] being a prime - \(p = \frac{P}{b - a}\)
P(not getting prime) = 1 - p P(not getting any prime in n trials) = (1 - p)^n P(getting at least one prime in n trials) = 1 - (1 - p)^n 0.99 = 1 - (1 - p)^n (1 - p)^n = 0.01 n = log(0.01, 1 - p) n = ln(0.01)/ln(1 - p)
So in order to be 99% sure that some prime number was sampled, we need to perform n trials where n = ln(0.01)/ln(1 - p)
Args:
Returns:
Source code in src/lbpqc/primitives/rng.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
sample_uniform_Zq(q, size=None)
Sample uniformly from \(\mathbb{Z}_{q}\) ring.
If size is None, returns single element.
If size is an int, returns vector (1 dim np.ndarray) with given size.
If size is a tuple, returns matrix (2 dim np.ndarray) with given shape.
Args:
Returns:
Source code in src/lbpqc/primitives/rng.py
59 60 61 62 63 64 65 66 67 68 69 70 71 |
|